Automatic Tuning of Agent-Based Models Using Genetic Algorithms

نویسندگان

  • Benoît Calvez
  • Guillaume Hutzler
چکیده

When developping multi-agent systems (MAS) or models in the context of agent-based simulation (ABS), the tuning of the model constitutes a crucial step of the design process. Indeed, agent-based models are generally characterized by lots of parameters, which together determine the global dynamics of the system. Moreover, small changes made to a single parameter sometimes lead to a radical modification of the dynamics of the whole system. The development and the parameter setting of an agent-based model can thus become long and tedious if we have no accurate, automatic and systematic strategy to explore this parameter space. That’s the development of such a strategy that we work on, suggesting the use of genetic algorithms. The idea is to capture in the fitness function the goal of the design process (efficiency for MAS that realize a given function, realism for agent-based models, etc.) and to make the model automatically evolve in that direction. However the use of genetic algorithms (GA) in the context of ABS raises specific difficulties that we develop in this article, explaining possible solutions and illustrating them on a simple and well-known model: the food-foraging by a colony of ants. We apply the method to a more complex example. We work on the simulation of the glycolysis and the phosphotranferase systems in Escherichia coli. In this work, we are interested in testing the hypothesis of hyperstructures, which are believed to improve the behavior of a cell. We try to determine under what conditions this may be true, and how these hyperstructures may function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors

Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Efficient and Robust Parameter Tuning for Heuristic Algorithms

The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristi...

متن کامل

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005